
NOTATION 

~( porosity; ~cs) thickness of capillary structure; L) lenth of the heat pipe; Rp) 
internal radius of the heat pipe; r) radius of the vapor space; Rr) radius of rotation; 
V~) volume charged with liquid; V s) volume of liquid in the stream; Vcs) volume of liquid 
in the capillary structure; Vd) volume of liquid drawn out; Def) effective diameter of the 
pores; Ph) hydrostatic pressure; Pc) capillary head pressure; p) density of heat transfer 
agent; g) acceleration of free fall; m) angular velocity of rotation; ~) surface tension; 
@) wetting angle; H) height of rise of heat transfer agent; H') degree of filling of the 
capillary structure. 

2. 

3. 
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NUMERICAL STUDY OF THE PROBLEM OF UNSTEADY HEAT 

TRANSFER IN A CASED-WELL-BED SYSTEM 
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Yu. A. Popov, and S. D. Tseitlin 

UDC 536.242 

A solution is presented for an unsteady axisyrametric heat-conduction problem 
connected with the development of the theory of the geothermal logging of cased 
wells. The solution is used as a basis for reaching several practical conclu- 
sions regarding the feasibility of conducting geothermal logging in cased wells. 

Thermal monitoring techniques employing an active source have recently come into wide 
use in flaw detection. To optimize measurement conditions and gain a better understanding 
of the physics of the pertinent phenomena, investigators have solved a number of two- and 
three-dimensional problems of unsteady heat transfer in nonuniform laminated media. Examples 
of such problems are those studied in [i, 2]. In the present investigation, we solve a sim- 
ilar problem connected with the theory of geothermal logging. The results may prove useful 
in refining the theory and optimizing logging conditions. The solution of this problem is 
also of interest in regard to developing methods of detecting flaws on tubes of heat ex- 
changers and fuel elements in nuclear reactors. 

Mathematically modeling the processes which take place in geothermal logging makes it 
possible to study the effect of the parameters of the probe (power and concentration of the 
source, velocity and length of the probe), the thermal properties of the fluid and the walls 
of the well, and geometric factors on the distribution of the temperature field and heat 
sources in the well-bed system. Here, we study the effect of the casing string and cement 
ring on unsteady heat transfer in the well-bed system and we evaluate the effect of the ve- 
locity and length of the probe on the feasibility of performing geothermal logging in cased 
wells. 

We will examine a cylindrical region (Fig. i) containing a well of radius RI filled 
with a fluid (liquid or gas) having a thermal conductivity Ii, heat capacity ci, and density 
p~. It is assumed that the well has been cased with a string having the thermal properties 
12, c2, and P2. The external radius of the string is R 2. The casing string has been ce- 
mented, the cement ring being represented as a hollow cylinder with an external radius Rs 
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Fig. i. Model of cased-well-bed system. 

and the thermal properties Xa, ca, Pa. Two beds of capacities HI, H 2 and different proper- 
ties (X4, c~, P4, ks, cs, Ps) are separated by a horizontal boundary. The well contains an 
annular movable heat source of unit power Q with the dimensions R4, Rs. 

Unsteady heat transfer in such an axisymmetric region is described by the heat-conduc- 
tion equation. In a cylindrical coordinate system, this equation has the form 

co at r Or , -~r §  ~ § Q(r' z, O. (1) 

Let the power of the moving source be represented in the fo l low ing  form (Q0(r) being a 
function of the radius, allowing us to vary the dimensions of the source): Q = Q0(r) exp 
(-k[(z - z0) - vt]2). 

The following conditions of continuity of temperature and heat flux must be satisfied 
on all horizontal and vertical boundaries: 

aT \ aT 

S i n c e  t h e  p r o b l e m  i s  b e i n g  s o l v e d  n u m e r i c a l l y  on a c o m p u t e r ,  we w i l l  examine  a f i n i t e  
r e g i o n  r e p r e s e n t e d  by a c y l i n d e r .  The h e i g h t  (H = H1 + H2) and r a d i u s  (R k)  o f  t h e  c y l i n d e r  
a r e  assumed  t o  be  such  as  t o  h a v e  m i n i m a l  e f f e c t  on t h e  s o l u t i o n  o f  t h e  p r o b l e m .  On t h e  e x -  
t e r n a l  b o u n d a r y  o f  t h e  c y l i n d e r  a t  r = R k ( u s u a l l y  t a k e n  e q u a l  t o  s e v e r a l  m e t e r s )  we a s s i g n  
a t e m p e r a t u r e  d i s t r i b u t i o n  c o r r e s p o n d i n g  t o  t h e  u n d i s t u r b e d  n a t u r a l  t e m p e r a t u r e  f i e l d  o f  t h e  
E a r t h  T0(Rk,  z ) .  

On t h e  l o w e r  and u p p e r  b o u n d a r i e s  o f  t h e  c y l i n d e r ,  we can  a s s i g n  t h e  c o n d i t i o n  o f  con -  
s t a n c y  o f  t h e  t e m p e r a t u r e  o r  h e a t  f l u x :  

T(r, z=O)=To(Rh, 0), T(r, z~H)=To(Rh ,  H) or  q(r, z=O)=q(r ,  z=H)=const .  (3 )  

On the axis of the well, it is necessary to satisfy the symmetry condition 

aT (r O, z) O. (4 )  
Or 

As the initial conditions in the given region, we can either take the temperature cor- 
responding to the stationary distribution in the porous medium or we can assume that it is 
everywhere equal to zero: 

T(r, z)=O. (5) 

We will use the finite-differences method [4] (locally unidimensional computing scheme) 
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to numerically solve the problem (Eqs. (i-5)). To do this, we replace the space (r, z, t) 
by its grid analog OJk (ih~, jki, xn), and we replace the continuous function T(r, z, t) by 
the grid function Tnj. The chosen grid has a uniform mesh with respect to z equal to h2 = 

const. Its mesh is also uniform (hz0 = const) in the radial direction (inside the well, at 
r -< Rz); at r > RI, the mesh of the grid is nonuniform hli = h~0q i-I (where q = const). 

We will write Eq. (i) in finite-difference form 

T~..+~ . [ ( r ~ ) ~ + •  T ~+' ~:-~ ) (cp)~: - ~  - -  T d  : 1 i + l : - -  T i i"  
r~h~ h~+~ 

2 

- -  ( r ~ ) i  I_] T ~ ' ? I  "r'n+l ,Tn+l Tr:*l 

2 o 

- - t l  -- "i i ] - - I  n 

2 

Proceeding in accordance with the locally unidimensional scheme being employed [4] and 
i n t r o d u c i n g  a f r a c t i o n a l  t i m e  s t e p  (n  + 1 / 2 )  a s  we s p l i t  Eq.  ( 6 )  i n t o  two p a r t s ,  we r e d u c e  
t h i s  e q u a t i o n  t o  t h e  f o l l o w i n g  s y s t e m  o f  a l g e b r a i c  e q u a t i o n s :  

1 I I n+ - -  n+ - -  n+ - -  
Ai jT i i_  2 __ BizTii  2 .~ Ci jT i i+~ : __Do,  ( 7 )  

/2. "T'n@ 1 �9 ~u-,-o'z .T~.+ 1. __ FuT::] +I q- ui:~i+l /  = --li:, 

where i = i,..., I; j = 1 ..... J; 

% 1 % i 
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I . =  (pc)~jT:: 2 +Q~. 

System (7) was solved (successively) by the trial-run method [4]. Use of this approach 
makes it possible to easily find the solution of a system of algebraic equations whose 
matrix contains nontrivial coefficients only on three diagonals. In this case, using the 
recursion formula 

I I n §  n §  
T u  ~ : a i j + l T i ] + i  ~ -]-~iy+l, i :  1 . . . . .  i; ] : [, ..., J, ( 8 )  

and  t h e  l e f t  b o u n d a r y  c o n d i t i o n  (T = c o n s t  o r  8 T / a r  = 0 ) ,  we c a n  f i n d  a s e q u e n c e  o f  c o r r e c -  
t i o n  f a c t o r s  { a j } ,  { ~ j } .  Then u s i n g  t h e  r i g h t  b o u n d a r y  c o n d i t i o n  (T = T (Rk ,  z ) ) ,  we e m p l o y  

Eq.  ( 8 )  t o  e x e c u t e  t h e  r e v e r s e  t r i a l  r u n  and  d e t e r m i n e  t h e  s o u g h t  f u n c t i o n  T n + ~ .  We s u b -  
i /  

s e q u e n t l y  p r o c e e d  i n  t h e  same m a n n e r  and  e x e c u t e  t h e  f o r w a r d  and  r e v e r s e  t r i a l  r u n s  in  

another direction (with respect to i), thus determining the value of T~j I throughout the 

region. The process is continued until we obtain the distribution of T~. throughout the in- 
terval of interest to us. lJ 

The absolute stability of the computing scheme follows from satisfaction of the condi- 
tions [4] 

Ai: ~ 0; C,: ~ 0; A u -}- C~: ~ Bij; E, j  ~ 0; Gu ~ 0; Ez: + Gu ~-~ F~. 
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The error of the approximation of the solution of problem (1-5) can be evaluated (with q = 
I) by breaking up the step and in our case it is ~15%. 

The calculations were performed on an ES-1065 computer. The grid contained I • J = 51 
• i01 nodes. 

We used the above model, realized in the form of programs written for the computer, to 
perform numerous computations for different system parameters corresponding to actual condi- 
tions. 

Let us present some of the results obtained for the model (Fig. i) using the following 
parameters: H I = i0 m; H2 = 5 m; RI = 0.i m; R 2 = 0.ii m, R s = 0.12 m; 11 = 0.6 W/(m.K); 
c I = 4200 J/(kg.K); Pl = i000 kg/m 3 in the case when the well was filled with fluid, and 

11 = 0.026 W/(m.K); c I = i000 J/(kg.K); Pl = 1.2 kg/m ~ in the case when the well was filled 
with air; the parameters X2 = 30 W/(m.K); c= = 800 W/(kg.K); P2 = 7200 kg/m 3 correspond to the 
thermal properties of the metal string; X3 = 1.8 W/(m.K); c a = i000 J/(kg.K); P3 = 2600 kg/m 3 
correspond to the thermal properties of the cement. The themal parameters of the beds for 
the given model were taken as follows: X~ = 2 W/(m.K); X 5 = 4 W/(m-K); c 4 = c5 = i000 J/ 
(kg.K); P4 = P5 = 2800 kg/m 3. The parameters of the heat source were Q0 = 106 W/(m3); 
R~ = El; R 5 = 0.05 m; k = I00; z 0 = 0.3 m; d = R3-R 2 = 0.01 m. 

Figure 2a shows the relations obtained from the solution of the problem along with the 
corresponding curves recorded using a temperature probe provided with an active source and 
having the length L = 4 m. Curve 1 corresponds to a simple temperature probe (T(z)), while 
curves 2 and 3 correspond to differential probes measuring the first (AT = (T(z + s - T(z - 
s163 and second (A2T = (T(z + s - 2T(z) + T(z - s163 differences in the temperature 
distribution along the wall of the well after the passage of a heat source pressed against 
it when the well was filled with air (s = 0.i m is the distance between sensors). It follows 
from Fig. 2a that use of the method of thermometry with an active source in the given case 
makes it possible to find the boundary between beds in a cased well, assuming that the length 
and velocity of the probe have been properly chosen. The chosen length and velocity should 
be such as to ensure that the period of time between the passage of the source and the pas- 
sage of the sensors is long enough to allow the heat to travel to the boundary between the 
beds. Here, it should be noted that the use of three sensors to measure the temperature on 
the well wall makes it possible to instrumentally obtain the analog of the second difference 
of the temperature distribution A2T, which is more sensitive to the presence of a horizontal 
boundary between beds than T(z) or AT(z). This illustrates the preferability of using dif- 
ferential thermometric methods when solving problems connected with well-logging. 

However, the wells that are usually studied are filled with liquid, which makes their 
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Fig. 2. Distribution of the quantities T, AT, A2T, corre- 
sponding to the curves recorded with temperature probes of 
the length L = 4 m, v = 0.025 m/sec: i) temperature probe 
which measured T(z); 2, 3) differential probes which mea- 
sured AT(z) and A2T(z), respectively; a) well filled with 
air; b) well filled with liquid. T, ~ z, m. 
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Fig. 3. Dependence of the parameter (k2T)max on probe veloc- 
ity v with d = 0.01 m (filler - water), v, m/sec. 
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Fig. 4. Dependence of the length of the probe permitting 
measurement of the maximum value (k2T)max on its velocity v 
(d = 0.01 m) (a) and on the thickness of the cement stone d 
(v = 0.025 m/sec) (b). L, d, m. 

thermal logging considerably more complicated. Estimates show that the thermal probe (source 
and detector) should be clamped together, since the existence of even a small gap between 
the probe and the wall of the well will significantly reduce its sensitivity and increase 
the inertia of the method. Such an adverse effect can be explained physically as a deteri- 
oration in the conditions of heat transfer between the probe and the wall due to the occur- 
rence of convective heat transfer in the gap. 

The presence of liquid in a well also prolongs the process of heating of the wall to a 
quasisteady regime, since the liquid has a higher thermal conductivity and heat capacity 
than air (Fig. 2). In connection with this, traditional thermometric techniques do not 
(especially in the case of a cemented metal string) give good results unless the measure- 
ment parameters are optimized beforehand. Figure 2b shows curves analogous to those shown 
in Fig. 2a for the case when the well is filled with liquid. It follows from these calcula- 
tions that there is a certain optimum probe length (Lop t) which, for the given values of the 
parameters of the model, makes it possible to measure the maximum value of A2T. 

Here, as in the case of a well filled with air, differential thermometric methods are 
more informative (Fig. 2b). An increase in probe velocity is accompanied by changes not only 
in the measurable level of a quantity (the sensitivity of the method) (Fig. 3) but also in 
the distance between the probe and the sensor (detector). This makes it possible to measure 
the maximum signal connected with detection of the horizontal boundary between the metal string 
and the cement ring. Figure 4a shows the change in probe lenght which yields the maximum 
measurable signal for A2T in relation to the velocity of the proble. Besides clamping the 
probe to the wall of the well, the effectiveness of geothermal logging with an active source 
can be enhanced by making the surface of the probe that contacts with the wall out of a mate- 
rial which is a good thaml insulator. In this case, the process of heat transfer between the 
wall and the liquid in the well becomes close to adiabatic. The latter in turn markedly im- 
proves the sensitivity of the method and speeds up attainment of a quasisteady temperature 
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dsitribution along thewall. Figure 4b shows the dependence of the length of a probe which 
permits measuremetn of the maximum value of (&2T) on the thickness of the cement (d) with 
a constant velocity v = 0.025 m/sec. This thickness is determined by the condition of the 
wall or the design of the well and may differ in different cases. 

It should be noted that the relations presented here change quantitatively in relation 
to the thermal properties of the rock comprising the bed, the material of the casing, and 
the cement. However, their behavior remains qualitatively the same within a broad range of 
values for the parameters of the model. 

i .  

, 

3. 
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